« Previous
1
Next »
(7 hits, 1/1)
Showing
10, 25, 50, 100, 500, 1000, all papers per page.
Sort by:
last publication date,
older publication date,
last update date.
- 1. Proc. symp. on the degradation od electronic devices due to device operation as well as crystalline and process-induced defects 94-1, 221-234 (1994) , ECS (ISBN:1-56677-037-8) , “Spin dependent recombination in Si p-n junctions”, B. K. Meyer , P. Christmann , W. Stadler, H. Overhof, J.-M. Spaeth, S. Greulich-Weber, B. Stich
- 2. Phys. Rev. B 47, 6363-6380 (1993) , “Electron paramagnetic resonance of multistable interstitial-carbonsubstitutional-group-V-atom pairs in silicon”, X. D. Zhan, G. D. WatkinsA total of five new electron paramagnetic resonance (EPR) centers are observed in electron-irradiated P-, As-, and Sb-doped silicon. Three are identified as arising from the neutral charge state of the stable configuration and two of the four metastable configurations of an... (Read more)
- 3. Mater. Res. Soc. Symp. Proc. 46, 227 (1985) , “Defect Identification in Silicon Using Electron Nuclear Double Redonance”, C. A. J. Ammerlaan, M. Sprenger, R. van Kemp, D. A. van Wezep.The application of electron nuclear double resonance (ENDOR) for identification and characterization of point defects in silicon is reviewed. Taking the vacancy and the boron-vacancy complex as examples it is discussed how ENDOR can provide information on the atomic and electronic structure of paramagnetic centers.
- 4. Lattice Defects in Semiconductors 23, 1-22 (1975) , Institute of Physics, London , “EPR Studies of the Lattice Vacancy and Low-Temperature Damage Processes in Silocon”, G. D. Watkins.EPR studies of silicon irradiated at 20.4 K and 4.2 K by 1.5 MeV and 46 MeV electrons are described. In 46 MeV irradiations the dominant defects formed appear to be divavancies and other multiple defect aggregates which liberate vacancies throughout the anneal to room temperature as they reorder, recombine, etc. For 1.5 MeV irradiations group III atoms play a vital role in p- and n-type materials in trapping interstitials and stabilizing damage. Carbon and oxygen are not effective interstitial traps at these temperatures. Evidence of limited vacancy migration during irradiation is also cited. Two distinct excited configurations of vacancy-oxygen pairs are identified as precursors to A-centre formation in n-type silicon. The kinetics for their conversion to A-centres depends strongly upon the Fermi level as does the isolated vacancy migration energy whhich is measured to be 0.18 ± 0.02 eV for the V= charge state. The vacancy has four charge states, V+, V0, V- and V=. Kinetics for hole release from V+ reveals an activation barrier of 0.057 eV. The concentration of V+ at 20.4 K in boron-doped material indicates the corresponding donor level even closer to the band edge, approximately EV + 0.039 eV. Jahn-Teller energies for V0, V+, and V- are estimated from stress-alignment studies and confirmed to be large. Kinetics studies for reorientation from one Jahn-Teller distortion to another are also described for each charge state.
- 5. Solid State Commun. 16, 171 (1975) , “On the Role of Defect Charge State in the Stability of Point Defects in Silicon”, L. C. Kimerling, H. M. DeAngelis, J. W. Diebold.Defect annealing in 1-MeV electron-irradiated, phosphorus-doped silicon is studied. Charge state effects are explored directly using a p-n junction structure. A defect state which is associated with the E center (phosphorus-vacancy pair) is found to disappear at approximately 150°C with an... (Read more)
- 6. Phys. Rev. B 9, 4351-4361 (1974) , “EPR study of defects in neutron-irradiated silicon: Quenched-in alignment under <110>-uniaxial stress”, Young-Hoon Lee and James W. CorbettThe stress effect in an EPR study is first treated rigorously in terms of the piezospectroscopic tensor, taking account of the local symmetry of a defect. It is found that the degree of alignment (n?/n?) provides incisive information on the structure of a defect; in general, a... (Read more)
- 7. Phys. Rev. 134, A1359 (1964) , “Defects in Irradiated Silicon: Electron Paramagnetic Resonance and Electron-Nuclear Double Resonance of the Si-E Center”, G. D. Watkins, J. W. Corbett.The Si-E center is one of the dominant defects produced by electron irradiation in phosphorus-doped vacuum floating zone silicon. It introduces an acceptor level at ?(Ec-0.4) eV and gives rise to an electron paramagnetic resonance when this level does not contain an electron. As a result... (Read more)
« Previous
1
Next »
(7 hits, 1/1)
Showing
10, 25, 50, 100, 500, 1000, all papers per page.
Sort by:
last publication date,
older publication date,
last update date.
All papers (3399)
Updated at 2010-07-20 16:50:39
Updated at 2010-07-20 16:50:39
(view as: tree
,
cloud
)
1329 | untagged |
Materials
(111 tags)
Others(101 tags)
Technique
(46 tags)
Details
(591 tags)
Bond(35 tags)
Defect(interstitial)(18 tags)
Defect(vacancy)(15 tags)
Defect-type(19 tags)
Element(65 tags)
Energy(8 tags)
Isotope(56 tags)
Label(303 tags)
Sample(17 tags)
Spin(8 tags)
Symmetry(15 tags)