« Previous
1
Next »
(11 hits, 1/1)
Showing
10, 25, 50, 100, 500, 1000, all papers per page.
Sort by:
last publication date,
older publication date,
last update date.
- 1. Phys. Rev. B 77, 195204 (2008) , “Identification of antisite carbon split-interstitial defects in 4H-SiC”, J. W. Steeds, W. SullivanA rich variety of optical centers with high energy local vibrational modes has been found in electron-irradiated 4H-SiC in both the as-irradiated and annealed states. These energies have been measured and the annealing dependence of the optical centers has been investigated by low-temperature... (Read more)
- 2. Phys. Rev. B 77, 195203 (2008) , “Creation and identification of the two spin states of dicarbon antisite defects in 4H-SiC”, J. W. Steeds, W. Sullivan, S. A. Furkert, G. A. Evans, P. J. WellmannThis paper deals with the positive identification by low-temperature photoluminescence microspectroscopy of the two spin states of the dicarbon antisites in 4H-SiC. The defects are created by high-dose electron irradiation at room temperature or by subsequent exposure to intense 325 nm radiation at... (Read more)
- 3. Phys. Rev. B 77, 085120 (2008) , “Identification of the carbon antisite in SiC: EPR of 13C enriched crystals”, Pavel G. Baranov, Ivan V. Ilyin, Alexandra A. Soltamova, and Eugene N. MokhovAn electron paramagnetic resonance spectrum with axial symmetry along c axis, spin S=1/2 and strong hyperfine interaction with one carbon atom has been observed in neutron-irradiated and annealed 6H-SiC, 13C isotope enriched. The 13C concentration was... (Read more)
- 4. phys. stat. sol. (b) 245, 1298-1314 (2008) , “EPR identification of intrinsic defects in SiC”, J. Isoya, T. Umeda, N. Mizuochi, N. T. Son, E. Janzen, T. OhshimaThe structure determination of intrinsic defects in 4H-SiC, 6H-SiC, and 3C-SiC by means of EPR is based on measuring the angular dependence of the 29Si/13C hyperfine (HF) satellite lines, from which spin densities, sp-hybrid ratio, and p-orbital direction can be determined over... (Read more)Si SiC diamond| EPR Theory electron-irradiation thermal-meas./anneal-exp.| +1 -1 0(neutral) 1.0eV~ 13C 29Si C1h C3v Carbon Csi D2d EI5/6 HEI1 HEI9/10 P6/7 Silicon T1 Td Tv2a V1/2/3 Vc Vsi antisite dangling-bond mono(=1) motional-effect n-type p-type pair(=2) quartet semi-insulating spin-relaxation triplet vacancy .inp files: SiC/Baranov/Baranov_g.inp SiC/EI5_C1h/5.inp SiC/EI5_C3v/5.inp SiC/EI6_RT/6.inp SiC/HEI10/HEI10a.inp SiC/HEI10/HEI10b.inp SiC/HEI1_C1h/1.inp SiC/HEI9/HEI9a.inp SiC/HEI9/HEI9b.inp SiC/SI5_C1h/4.inp SiC/Ky2/Ky2.inp SiC/Tv2a/Main.INP SiC/Vsi-_II_4H/Main.INP SiC/Vsi-_II_6H/Main.INP SiC/Vsi-_I_4H/Main.INP SiC/Vsi-_I_6H/Main.INP | last update: Takahide Umeda
- 5. Phys. Rev. B 75, 245202 (2007) , “Identification of positively charged carbon antisite-vacancy pairs in 4H-SiC”, T. Umeda, J. Ishoya, T. Ohshima, N. Morishita, H. Itoh, and A. GaliAn antisite-vacancy pair and a monovacancy are a set of fundamental stable and/or metastable defects in compound semiconductors. Theory predicted that carbon antisite-vacancy pairs would be much more stable in p-type SiC than silicon vacancies and that they would be a common defect. However,... (Read more)
- 6. Phys. Rev. B 73, 161201(R) (2006) , “Thermally stable carbon-related centers in 6H-SiC: Photoluminescence spectra and microscopic models”, A. Mattausch, M. Bockstedte, O. Pankratov, J. W. Steeds, S. Furkert, J. M. Hayes, W. Sullivan, N. G. WrightRecent ab initio calculations [Mattausch et al., Phys. Rev. B 70, 235211 (2004)] of carbon clusters in SiC reveal a possible connection between the tricarbon antisite (C3)Si and the U photoluminescence center in 6H-SiC [Evans et al., Phys. Rev. B 66, 35204... (Read more)
- 7. Phys. Rev. B 73, 033204 (2006) , “Electrical characterization of metastable carbon clusters in SiC: A theoretical study”, A. Gali, N. T. Son, E. JanznFirst-principles calculations carried out in 3C- and 4H-SiC show that small metastable carbon clusters can be created in irradiated SiC. The metastable carbon clusters possess occupation levels in the p-type as well as in the n-type 4H-SiC. Depending on the... (Read more)
- 8. Phys. Rev. Lett. 96, 145501 (2006) , “Identification of the Carbon Antisite-Vacancy Pair in 4H-SiC”, T. Umeda, N. T. Son, J. Isoya, E. Janzn, T. Ohshima, N. Morishita, H. Itoh, A. Gali, M. BockstedteThe metastability of vacancies was theoretically predicted for several compound semiconductors alongside their transformation into the antisite-vacancy pair counterpart; however, no experiment to date has unambiguously confirmed the existence of antisite-vacancy pairs. Using electron paramagnetic resonance and first principles calculations we identify the SI5 center as the carbon antisite-vacancy pair in the negative charge state (CSiVC-) in 4H-SiC. We suggest that this defect is a strong carrier-compensating center in n-type or high-purity semi-insulating SiC. (Read more)SiC| ENDOR EPR Theory electron-irradiation optical-spectroscopy thermal-meas./anneal-exp.| -1 -2 1.0eV~ 13C 29Si C1h C3v Carbon Csi EI5/6 HEI1 HEI5/6 Nitrogen P6/7 SI5 Silicon Vc antisite bistable/metastable dangling-bond n-type pair(=2) semi-insulating vacancy .inp files: SiC/SI5_C1h SiC/SI5_80K SiC/SI5_100K | last update: Takashi Fukushima
- 9. Phys. Rev. B 70, 235211 (2004) , “Structure and vibrational spectra of carbon clusters in SiC”, Alexander Mattausch, Michel Bockstedte, and Oleg PankratovThe electronic, structural, and vibrational properties of small carbon interstitial and antisite clusters are investigated by ab initio methods in 3C- and 4H-SiC. The defects possess sizable dissociation energies and may be formed via condensation of carbon interstitials, e.g.,... (Read more)
- 10. Proc. symp. on the degradation od electronic devices due to device operation as well as crystalline and process-induced defects 94-1, 221-234 (1994) , ECS (ISBN:1-56677-037-8) , “Spin dependent recombination in Si p-n junctions”, B. K. Meyer , P. Christmann , W. Stadler, H. Overhof, J.-M. Spaeth, S. Greulich-Weber, B. Stich
- 11. Semicond. Sci. Technol. 8, 1385-1392 (1993) , “Electrically detected electron paramagnetic resonance of a deep recombination centre in a silicon diode”, B. Stich , S. Gruelich-Weber , J.-M. Spaeth , H. Overhof
« Previous
1
Next »
(11 hits, 1/1)
Showing
10, 25, 50, 100, 500, 1000, all papers per page.
Sort by:
last publication date,
older publication date,
last update date.
All papers (3399)
Updated at 2010-07-20 16:50:39
Updated at 2010-07-20 16:50:39
(view as: tree
,
cloud
)
1329 | untagged |
Materials
(111 tags)
Others(101 tags)
Technique
(46 tags)
Details
(591 tags)
Bond(35 tags)
Defect(interstitial)(18 tags)
Defect(vacancy)(15 tags)
Defect-type(19 tags)
Element(65 tags)
Energy(8 tags)
Isotope(56 tags)
Label(303 tags)
Sample(17 tags)
Spin(8 tags)
Symmetry(15 tags)