![papers icon](/div-media/epr/images/icons/paper_red.png)
« Previous
1
Next »
(32 hits, 1/1)
Showing
10, 25, 50, 100, 500, 1000, all papers per page.
Sort by:
last publication date,
older publication date,
last update date.
- 1. phys. stat. sol. (b) 245, 1298-1314 (2008) , “EPR identification of intrinsic defects in SiC”, J. Isoya, T. Umeda, N. Mizuochi, N. T. Son, E. Janzen, T. OhshimaThe structure determination of intrinsic defects in 4H-SiC, 6H-SiC, and 3C-SiC by means of EPR is based on measuring the angular dependence of the 29Si/13C hyperfine (HF) satellite lines, from which spin densities, sp-hybrid ratio, and p-orbital direction can be determined over... (Read more)Si SiC diamond| EPR Theory electron-irradiation thermal-meas./anneal-exp.| +1 -1 0(neutral) 1.0eV~ 13C 29Si C1h C3v Carbon Csi D2d EI5/6 HEI1 HEI9/10 P6/7 Silicon T1 Td Tv2a V1/2/3 Vc Vsi antisite dangling-bond mono(=1) motional-effect n-type p-type pair(=2) quartet semi-insulating spin-relaxation triplet vacancy .inp files: SiC/Baranov/Baranov_g.inp SiC/EI5_C1h/5.inp SiC/EI5_C3v/5.inp SiC/EI6_RT/6.inp SiC/HEI10/HEI10a.inp SiC/HEI10/HEI10b.inp SiC/HEI1_C1h/1.inp SiC/HEI9/HEI9a.inp SiC/HEI9/HEI9b.inp SiC/SI5_C1h/4.inp SiC/Ky2/Ky2.inp SiC/Tv2a/Main.INP SiC/Vsi-_II_4H/Main.INP SiC/Vsi-_II_6H/Main.INP SiC/Vsi-_I_4H/Main.INP SiC/Vsi-_I_6H/Main.INP | last update: Takahide Umeda
- 2. Phys. Rev. B 75, 115206 (2007) , “Local-density-functional calculations of the vacancy-oxygen center in Ge”, A. Carvalho, R. Jones, J. Coutinho, V. J. B. Torres, S. Öberg, J. M. Campanera Alsina, M. Shaw, and P. R. BriddonWe carry out a comprehensive density-functional study of the vacancy-oxygen (VO) center in germanium using large H-terminated Ge clusters. The importance of a nonlinear core correction to account for the involvement of the 3d electrons in Ge-O bonds is discussed. We calculate the electrical... (Read more)
- 3. Appl. Phys. Lett. 89, 142914 (2006) , “Defect passivation in HfO2 gate oxide by fluorine”, K. Tse and J. RobertsonThe authors have calculated that fluorine substituting for oxygen gives no gap states in HfO2. This accounts for the good passivation of oxygen vacancies by F seen experimentally. Bonding arguments are used to account for why F may be the most effective passivant in ionic oxides such as... (Read more)
- 4. Appl. Phys. Lett. 89, 082908 (2006) , “Negative oxygen vacancies in HfO2 as charge traps in high-k stacks”, J. L. Gavartin, D. Muñoz Ramo, A. L. Shluger, G. Bersuker, and B. H. LeeThe optical excitation and thermal ionization energies of oxygen vacancies in m-HfO2 are calculated using a non-local density functional theory with atomic basis sets and periodic supercell. The thermal ionization energies of negatively charged V and... (Read more)
- 5. Appl. Phys. Lett. 88, 201918 (2006) , “Diffusion of zinc vacancies and interstitials in zinc oxide”, Paul Erhart and Karsten AlbeThe self-diffusion coefficient of zinc in ZnO is derived as a function of the chemical potential and Fermi level from first-principles calculations. Density functional calculations in combination with the climbing image-nudged elastic band method are used in order to determine migration barriers for... (Read more)
- 6. Appl. Phys. Lett. 88, 182903 (2006) , “Effects of Al addition on the native defects in hafnia”, Q. Li, K. M. Koo, W. M. Lau, P. F. Lee, J. Y. Dai, Z. F. Hou, X. G. GongTwo occupied native defect bands are experimentally detected in pure HfO2. The density of states of band one in the middle of the band gap reduces drastically with the Al addition, while that of band two slightly above the valence-band maximum remains rather unaffected. We attribute the... (Read more)
- 7. Appl. Phys. Lett. 88, 162107 (2006) , “Physical origin of threshold voltage problems in polycrystalline silicon/HfO2 gate stacks”, Dae Yeon Kim, Joongoo Kang, and K. J. ChangBased on theoretical calculations, we find that at p+ polycrystalline silicon (poly-Si)/HfO2 gates, Si interstitials are easily migrated from the electrode, forming HfSi bonds with a charge transfer to the electrode, and the resulting interface dipole raises the Fermi level... (Read more)
- 8. J. Appl. Phys. 99, 044105 (2006) , “Passivation of oxygen vacancy states in HfO2 by nitrogen”, K. Xiong, J. Robertson, and S. J. ClarkNitrogen is known to reduce leakage currents and charge trapping in high-dielectric-constant gate oxides such as HfO2. We show that this occurs because nitrogen, substituting for oxygen atoms next to oxygen vacancy sites, repels the occupied gap states due to the neutral and positively... (Read more)
- 9. Phys. Rev. B 74, 195202 (2006) , “Interstitial-mediated mechanisms of As and P diffusion in Si: Gradient-corrected density-functional calculations”, Scott A. Harrison, Thomas F. Edgar, and Gyeong S. HwangGradient-corrected density-functional calculations are used to determine the structure, stability, and diffusion of arsenic-interstitial and phosphorus-interstitial pairs in the positive, neutral, and negative charge states. For both cases, our calculations show that the neutral pair will be... (Read more)
- 10. Phys. Rev. Lett. 96, 145501 (2006) , “Identification of the Carbon Antisite-Vacancy Pair in 4H-SiC”, T. Umeda, N. T. Son, J. Isoya, E. Janzn, T. Ohshima, N. Morishita, H. Itoh, A. Gali, M. BockstedteThe metastability of vacancies was theoretically predicted for several compound semiconductors alongside their transformation into the antisite-vacancy pair counterpart; however, no experiment to date has unambiguously confirmed the existence of antisite-vacancy pairs. Using electron paramagnetic resonance and first principles calculations we identify the SI5 center as the carbon antisite-vacancy pair in the negative charge state (CSiVC-) in 4H-SiC. We suggest that this defect is a strong carrier-compensating center in n-type or high-purity semi-insulating SiC. (Read more)SiC| ENDOR EPR Theory electron-irradiation optical-spectroscopy thermal-meas./anneal-exp.| -1 -2 1.0eV~ 13C 29Si C1h C3v Carbon Csi EI5/6 HEI1 HEI5/6 Nitrogen P6/7 SI5 Silicon Vc antisite bistable/metastable dangling-bond n-type pair(=2) semi-insulating vacancy .inp files: SiC/SI5_C1h SiC/SI5_80K SiC/SI5_100K | last update: Takashi Fukushima
- 11. Appl. Phys. Lett. 87, 062105 (2005) , “Negative-U property of oxygen vacancy in cubic HfO2”, Y. P. Feng, A. T. L. Lim, M. F. LiOxygen vacancy in cubic HfO2 was investigated using first-principles calculation based on density functional theory and generalized gradient approximation. Five different charge states (V++, V+, V0, V, and... (Read more)
- 12. J. Appl. Phys. 97, 053704 (2005) , “The role of nitrogen-related defects in high-k dielectric oxides: Density-functional studies”, J. L. Gavartin, A. L. Shluger, A. S. Foster, G. I. BersukerUsing ab initio density-functional total energy and molecular-dynamics simulations, we study the effects of various forms of nitrogen postdeposition anneal (PDA) on the electric properties of hafnia in the context of its application as a gate dielectric in field-effect transistors. We... (Read more)
- 13. Phys. Rev. B 72, 235208 (2005) , “Spin multiplicity and charge state of a silicon vacancy (TV2a) in 4H-SiC determined by pulsed ENDOR”, N. Mizuochi, S. Yamasaki, H. Takizawa, N. Morishita, T. Ohshima, H. Itoh, T. Umeda, and J. IsoyaIn this paper, we unambiguously re-determine the spin multiplicity of TV2a by pulsed electron nucleus double resonance technique. The TV2a center is one of the most commonly observed defects in 4H-SiC, and its origin was... (Read more)
- 14. Phys. Rev. B 71, 193202 (2005) , “EPR and theoretical studies of negatively charged carbon vacancy in 4H-SiC”, T. Umeda, Y. Ishitsuka, J. Isoya, N. T. Son, E. Janz?n, N. Morishita, T. Ohshima, H. Itoh, A. GaliCarbon vacancies (VC) are typical intrinsic defects in silicon carbides (SiC) and so far have been observed only in the form of positively charged states in p-type or semi-insulating SiC. Here, we present electron-paramagnetic-resonance (EPR) and photoinduced EPR (photo-EPR)... (Read more)
- 15. Appl. Phys. Lett. 84, 3406-3408 (2004) , “Structure of 6H silicon carbide/silicon dioxide interface trapping defects”, David J. Meyer, Nathaniel A. Bohna, and Patrick M. LenahanWe utilize spin-dependent recombination (SDR) to observe deep level trap defects at or very near the interface of 6H silicon carbide and the SiO2 gate dielectric in SiC metal-oxide-semiconductor field effect transistors. The SDR response is strongly correlated to SiC/SiO2... (Read more)
- 16. Phys. Rev. Lett. 93, 086102 (2004) , “Reaction of the Oxygen Molecule at the Si(100)–SiO2 Interface During Silicon Oxidation”, Angelo Bongiorno and Alfredo PasquarelloUsing constrained ab initio molecular dynamics, we investigate the reaction of the O2 molecule at the Si(100)SiO2 interface during Si oxidation. The reaction proceeds sequentially through the incorporation of the O2 molecule in a Si-Si bond and the... (Read more)
- 17. Phys. Rev. Lett. 92, 135502 (2004) , “Hydrogen Incorporation in Diamond: The Vacancy-Hydrogen Complex”, C. Glover, M. E. Newton, P. M. Martineau, S. Quinn, D. J. TwitchenWe report the identification of the vacancy-hydrogen complex in single crystal diamond synthesized by chemical vapor deposition. The S = 1 defect is observed by electron paramagnetic resonance in the negative charge state. The hydrogen atom is bonded to one of the carbon atoms neighboring the... (Read more)
- 18. Appl. Phys. Lett. 83, 3407-3409 (2003) , “Electron spin resonance observation of trapped electron centers in atomic-layer-deposited hafnium oxide on Si”, A. Y. Kang, P. M. Lenahan, J. F. Conley Jr.We observed two paramagnetic defects in thin films of HfO2 on silicon with electron spin resonance. Both appear after photoinjecting electrons into the dielectric. Strong spectroscopic evidence links one spectrum to an O2-" align="middle"> defect. A second spectrum is... (Read more)
- 19. Phys. Rev. Lett. 90, 185507 (2003) , “Hydrogen Incorporation in Diamond: The Nitrogen-Vacancy-Hydrogen Complex”, C. Glover, M. E. Newton, P. Martineau, D. J. Twitchen, J. M. BakerWe report the identification of the nitrogen-vacancy-hydrogen complex in a freestanding nitrogen-doped isotopically engineered single crystal diamond synthesized by chemical vapor deposition. The hydrogen atom is located in the vacancy of a nearest-neighbor nitrogen-vacancy defect and appears to be... (Read more)
- 20. Phys. Rev. B 66, 161202(R) (2002) , “Phosphorus and sulphur doping of diamond”, L. G. Wang and Alex ZungerPrevious calculations on n-type doping of diamond by P and S predicted that S has a shallower level and a higher solubility than P. Our first-principles calculations show that the opposite is true: Phosphorus impurity in diamond gives rise to a shallower donor level, and has a higher bulk solid... (Read more)
- 21. Thin Solid Films 395, 266-269 (2001) , “Charge-trapping defects in Cat-CVD silicon nitride films”, T. Umeda, Y. Mochizuki, Y. Miyoshi and Y. NashimotoWe show that Cat-CVD silicon nitride films contain more than 1019 cm−3 nitrogen-bonded Si dangling bonds, similarly to the case for conventional CVD films. However, the charge-trapping behavior of the Cat-CVD films is found to be quite different, in spite of the same origin for the dominant... (Read more)
- 22. Phys. Rev. Lett. 83, 372 (1999) , “Hydrogen Electrochemistry and Stress-Induced Leakage Current in Silica”, Peter E. Bl?chl and James H. StathisHydrogen-related defects in oxygen-deficient silica, representing the material of a thermal gate oxide, are analyzed using first-principles calculations. Energetics and charge-state levels of oxygen vacancies, hydrogen, and their complexes in the silica framework are mapped out. The neutral hydrogen... (Read more)
- 23. J. Appl. Phys. 72, 520-524 (1992) , “Deep levels of vanadium and vanadium-hydrogen complex in silicon”, T. Sadoh, H. Nakashima, and T. TsurushimaDeep levels in vanadium-doped n- and p-type silicon have been investigated using deep level transient spectroscopy (DLTS) and concentration profile measurements. The DLTS measurement reveals two electron traps of EC−0.20 eV and... (Read more)
- 24. Phys. Rev. B 42, 5759 (1990) , “EPR Identification of the Single-Acceptor State of Interstitial Carbon in Silicon”, L. W. Song and G. D. WatkinsAn EPR center labeled Si-L6 is reported which is identified as arising from the singly ionized acceptor state of isolated interstitial carbon (Ci-) in electron-irradiated crystalline silicon. Correlated deep-level capacitance transient spectroscopy measurements locate the... (Read more)
- 25. Phys. Rev. B 41, 12354-12357 (1990) , “Negative-charge state of hydrogen in silicon”, J. Zhu, N. M. Johnson, and C. HerringIt is demonstrated that hydrogen can migrate in silicon as a negatively charged species (H-). The evidence is the combined observation of a strong electric-field dependence in the rate of removal of PH complexes during bias-temperature stress of hydrogenated Schottky-barrier diodes and... (Read more)
- 26. Solid State Commun. 73, 393 (1990) , “Electron paramagnetic resonance of nickel in silicon. — I. Identification of spectrum”, L. S. Vlasenko, N. T. Son, A. B. van Oosten, C. A. J. Ammerlaan, A. A. Lebedev, E. S. Taptygov, V. A. KhramtsovResults are reported on the paramagnetic resonance spectrum recently identified with the negatively charged state of substitutional nickel in n-type silicon. Studies were made on the presence of the spectrum in silicon with different concentrations of phosphorus doping and under various conditions... (Read more)
- 27. Phys. Rev. B 39, 10791-10808 (1989) , “Theory of hydrogen diffusion and reactions in crystalline silicon”, Chris G. Van de Walle, P. J. H. Denteneer, Y. Bar-Yam, and S. T. PantelidesThe behavior of hydrogen in crystalline silicon is examined with state-of-the-art theoretical techniques, based on the pseudopotential-density-functional method in a supercell geometry. Stable sites, migration paths, and barriers for different charge states are explored and displayed in total-energy... (Read more)
- 28. Appl. Phys. A 30, 1 (1983) , “Transition Metals in Silicon”, E. R. Weber.A review is given on the diffusion, solubility and electrical activity of 3d transition metals in silicon. Transition elements (especially, Cr, Mn, Fe, Co, Ni, and Cu) diffuse interstitially and stay in the interstitial site in thermal equilibrium at the diffusion temperature. The parameters of the liquidus curves are identical for the Si:Ti — Si:Ni melts, indicating comparable silicon-metal interaction for all these elements. Only Cr, Mn, and Fe could be identified in undisturbed interstitial sites after quenching, the others precipitated or formed complexes. The 3d elements can be divided into two groups according to the respective enthalpy of formation of the solid solution. The distinction can arise from different charge states of these impurities at the diffusion temperature. For the interstitial 3d atoms remaining after quenching, reliable energy levels are established from the literature and compared with recent calculations. (Read more)
- 29. Z. Physik B 23, 171-181 (1976) , “Intrinsic Defects in Electron Irradiated Zinc Oxide”, B. Schallenberge, A. Hausmann
- 30. Lattice Defects in Semiconductors 23, 1-22 (1975) , Institute of Physics, London , “EPR Studies of the Lattice Vacancy and Low-Temperature Damage Processes in Silocon”, G. D. Watkins.EPR studies of silicon irradiated at 20.4 K and 4.2 K by 1.5 MeV and 46 MeV electrons are described. In 46 MeV irradiations the dominant defects formed appear to be divavancies and other multiple defect aggregates which liberate vacancies throughout the anneal to room temperature as they reorder, recombine, etc. For 1.5 MeV irradiations group III atoms play a vital role in p- and n-type materials in trapping interstitials and stabilizing damage. Carbon and oxygen are not effective interstitial traps at these temperatures. Evidence of limited vacancy migration during irradiation is also cited. Two distinct excited configurations of vacancy-oxygen pairs are identified as precursors to A-centre formation in n-type silicon. The kinetics for their conversion to A-centres depends strongly upon the Fermi level as does the isolated vacancy migration energy whhich is measured to be 0.18 ± 0.02 eV for the V= charge state. The vacancy has four charge states, V+, V0, V- and V=. Kinetics for hole release from V+ reveals an activation barrier of 0.057 eV. The concentration of V+ at 20.4 K in boron-doped material indicates the corresponding donor level even closer to the band edge, approximately EV + 0.039 eV. Jahn-Teller energies for V0, V+, and V- are estimated from stress-alignment studies and confirmed to be large. Kinetics studies for reorientation from one Jahn-Teller distortion to another are also described for each charge state.
- 31. Phys .Rev. Lett. 32, 271 (1974) , “Observation of Electron Spin Resonance of Negative Ions in Liquid Helium”, Jonathan F. Reichert and Arnold J. DahmWe have observed ESR signals of negative ions in liquid helium. The linewidth and g value have been measured. Electrons injected into helium by field emission from ferromagnetic tips are shown to be polarized. We propose a new technique for the measurement of electron spin polarization. (Read more)
- 32. Phys. Rev. B 9, 4351-4361 (1974) , “EPR study of defects in neutron-irradiated silicon: Quenched-in alignment under <110>-uniaxial stress”, Young-Hoon Lee and James W. CorbettThe stress effect in an EPR study is first treated rigorously in terms of the piezospectroscopic tensor, taking account of the local symmetry of a defect. It is found that the degree of alignment (n?/n?) provides incisive information on the structure of a defect; in general, a... (Read more)
« Previous
1
Next »
(32 hits, 1/1)
Showing
10, 25, 50, 100, 500, 1000, all papers per page.
Sort by:
last publication date,
older publication date,
last update date.
All papers (3399)
Updated at 2010-07-20 16:50:39
Updated at 2010-07-20 16:50:39
(view as: tree
,
cloud
)
1329 | untagged |
Materials
(111 tags)
Others(101 tags)
Technique
(46 tags)
Details
(591 tags)
Bond(35 tags)
Defect(interstitial)(18 tags)
Defect(vacancy)(15 tags)
Defect-type(19 tags)
Element(65 tags)
Energy(8 tags)
Isotope(56 tags)
Label(303 tags)
Sample(17 tags)
Spin(8 tags)
Symmetry(15 tags)